Model Paper

B.Sc (III-Year) Examination

(New, w.e.f 2010-2011)

Mathematics, Paper-IV

(Numerical Analysis)

Time: 3 Hours

Part-I (Marks: 6x6=36)

Max.Marks:100

Answer any six questions

- 1. Find a real root of the equation $f(x) = x^3 x 1 = 0$ using bisection method. Also compute error tolerance percentage at each iteration.
- 2. Compute a real root of the equation $e^x = x^2$ to an accuracy of 10^{-5} using iterative method.
- 3. Find the cubic polynomial which takes the following values: y(0) = 1, y(1) = 0, y(2) = 1, y(3) = 10 using Newtones forward interpolation formula.
- 4. Find a polynomial f(x) which takes the following values using Newtonøs divided difference formula:

x: -1 0 3 6 7 f(x): 3 -6 39 822 1611

5. Fit a straight line of the form $y = a_0 + a_1 x$ to the data:

 x
 1
 2
 3
 4
 6
 8

 y:
 2.4
 3.1
 3.5
 4.2
 5.0
 6.0

6. From the following table find the area bounded by the curve f(x) and the x-axis from x = 7.47 to x = 7.52 using Trapezoidal rule:

x: 7.47 7.48 7.49 7.50 7.51 7.52 f(x): 1.93 1.95 1.98 2.01 2.03 2.06

7. Solve the following system of equations using Matrix inversion method:

$$3x + y + 2z = 3$$
$$2x - 3y - z = -3$$
$$x + 2y + z = 4$$

8. Given $\frac{dy}{dx} = 1 + xy$ and y(0) = 1, obtain Taylor series for y(x) and thereby compute y(0.1) correct to four decimal places.

Part-II (Marks: 4x16=64)

Answer **four** questions, choosing one question from each section

Section - A

- 9 (a). Establish sufficient condition for a sequence of iterations converges to a root in the case of iteration method.
 - (b). Solve the equation $x^3 + x^2 + x + 7 = 0$ using False position method.
- 10 (a). Using Ramanujanos method, obtain the first eight convergents of the equation $x + x^3 = 1$.
- (b). Establish the formula $x_{i+1} = \frac{1}{2} \left(x_i + \frac{N}{x_i} \right)$ and hence compute the value of $\sqrt{2}$ to six decimal places.

Section - B

11 . Derive the formula for Gauss forward interpolation formula

12 (a). Given the table of values

<i>x</i> :	50	52	54	56
f(x):	3.684	3.732	3.779	3.825

Find the value of f(55) using Newtonøs backward interpolation formula.

(b). Find the value of f(304) using Lagrange interpolation formula given that

$$f(300) = 2.4771$$
, $f(304) = 2.4829$, $f(305) = 2.4843$, and $f(307) = 2.4871$.

Section - C

13 (a) . Derive the normal equations to fit a curve of the form $y = e^{ax+b}$ by the method of least squares.

(b). Find the values of a, b, c so that $y = a + bx + cx^2$ is the best fit to the data:

$$x : 0 1 2 3 4$$

$$f(x): 1 0 3 10 21$$

14 (a). Obtain Simpsonøs $\frac{1}{3}$ rule for numerical integration $I = \int_{x_0}^{x_n} y \, dx$

(b). From the following tablular values of x and y obtain $\frac{dy}{dx}$ for x = 1.2

 x
 :
 1.0
 1.2
 1.4
 1.6
 1.8
 2
 2.0
 2.2

 y
 :
 2.7183
 3.3201
 4.0552
 4.9532
 6.0496
 7.3891
 9.0250

15. Solve the following system of equations using factorization method:

$$2x + 3y + z = 9$$

$$x + 2y + 3z = 6$$

$$3x + y + 2z = 8.$$

16. Given $\frac{dy}{dx} = 1 + y^2$, where y = 0 when x = 0, find y(0.2), y(0.4), and y(0.6) using

Eulerøs method.